
We need an expressive functional language to support MMS. We choose Haskell.

When it comes to synthesis, however, Haskell has many features that are hard to
translate directly to gates.
•  General recursion, recursive data types, higher-order functions…

Semantics-directed Machine Architecture in ReWire
Adam Procter1, William L. Harrison1, Ian Graves1, Michela Becchi1, and Gerard Allwein2

(1) University of Missouri (2) U.S. Naval Research Laboratory

QR code generated on http://qrcode.littleidiot.be

Semantic Modularity
Suppose we want to add hardware support for separation to a stock embedded processor
design, allowing safe interleaving of processes handling classified and unclassified data.

Where does the new “separation module” go?

(Source: PicoBlaze 8-bit Embedded Microcontroller User Guide, Xilinx Inc.)

Problem: Original design is modular in a structural sense, but not in a semantic sense.

How to achieve semantic modularity in hardware design?

Here?

Here?

Here?
Here?

Here?

Idea from programming language theory: modular monadic semantics (MMS).

With MMS, you construct custom domain-specific languages supporting just the kind of semantic
effects you want, from building blocks called monad transformers.

In the figure, each “layer” of the “onion” corresponds to a monad transformer. Extending a
semantically modular processor design with hardware-level separation is a simple matter of adding
one more monad transformer.

 CPU without separation CPU with separation

Challenge: Compilation

D	
 Q	

QB	

EN	

RSTB	

J	
 Q	

QB	

RSTB	

SET	

K	

SB	

RB	

Q	

QB	

Σ	

??

Solution: Partial Evaluation

D	
 Q	

QB	

EN	

RSTB	

Σ	

We have implemented a prototype compiler called ReWire that translates MMS specifications written
in Haskell into VHDL suitable for use on FPGAs.

The core technique here is partial evaluation, a program transformation technique that works by
performing as much evaluation at compile time as possible.

Partial evaluation is effective at eliminating language constructs that cannot be directly translated
to hardware, producing a normal-form program that can easily be translated into a finite state
machine.

Case Study Ongoing Work
Paper discusses the synthesis of a very simple processor design in MMS style, with a tiny
instruction set (four instructions), two general-purpose registers, an external program
ROM, and a single output line.

As compiled by ReWire, this processor design utilizes115 logic slices on a Spartan-3E
series FPGA. Detailed usage statistics for a Spartan-3E XC3S500E FPGA, speed grade
-4, are as follows. Maximum clock rate on this particular chip is around 133MHz.

This research was supported by the U.S. Department of Education under GAANN grant number P200A100053.

State%(Registers,%Flags)%
%
%
%
%
%
%
%
%
%
%

Reac1vity%
(Address/Data%
Bus,%I/O%Ports)%

State%(Lo%Regs,%Flags)%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

State%(Hi%Regs,%Flags)%
%
%
%
%
%
%
%
%
%
%

Reac3vity%
(Address/Data%
Bus,%I/O%Ports)%

Example at Scale: PicoBlaze from Xilinx
We have developed an MMS-style specification for the PicoBlaze soft microcontroller from Xilinx. The MMS semantics corresponds nicely to the informal documentation.

 Left: PicoBlaze instruction code reference; Right: PicoBlaze instruction decoder in modular monadic semantics.

Left: Pseudocode for PicoBlaze ADD instruction from the reference manual; Right: ADD instruction in modular monadic semantics.

decode :: Instruction -> CPU ()	
decode (W18 0 1 1 0 0 0 x0 x1 x2 x3 k0 k1 k2 k3 k4 k5 k6 k7) =	
 addImm (W4 x0 x1 x2 x3) (W8 k0 k1 k2 k3 k4 k5 k6 k7)  
	
decode (W18 0 1 1 0 0 1 x0 x1 x2 x3 y0 y1 y2 y3 0 0 0 0) =	
 addReg (W4 x0 x1 x2 x3) (W4 y0 y1 y2 y3)  
 
…	

binopImm :: Binop -> Register -> Byte -> CPU ()	
binopImm oper sX kk = do v <- getReg sX	
 c <- getFlag FlagC	
 let (c',v') = (v `oper` kk) c	
 putFlag FlagZ (toBit $ v' == 0)	
 putFlag FlagC c'	
 putReg sX v'	
 incrPC	
 tick	
 tick	

Used	
 Available	
 U,liza,on	
 %	

Slices	
 115	
 4656	
 2.47%	

Slice	
 Flip	
 Flops	
 48	
 9312	
 0.52%	

4-­‐Input	
 LUTs	
 213	
 9312	
 2.29%	

Apart from the benefits in extensibility, monadic semantics offers a powerful basis for formal
verification, namely equational reasoning.

Ongoing work involves adapting existing techniques by several of the authors, previously used to
verify monadic security kernels implemented in software, to prove separation properties of
hardware circuits.

Further reading:

W. L. Harrison, A. Procter and G. Allwein. The confinement problem in the presence of faults. ICFEM 2012.
W. L. Harrison and J. Hook. Achieving information flow security through monadic control of effects. J. Comput. Secur., October 2009.

…

